
Stay Productive While Slicing Up the
Monolith

Markus Eisele

@myfear

Classical Architectures?

Application	Server

EAR	- Enterprise	Archive

RESTMobileWeb
UI

.JAR.JAR
.JAR

.JAR.JAR
.JAR
.JAR

.JAR
.JAR
.JAR

Browser RDBMS

Application	Server

Application	Server

Application	Server

EAR	- Enterprise	Archive

RESTMobileWeb
UI

.JAR.JAR
.JAR

.JAR.JAR
.JAR
.JAR

.JAR
.JAR
.JAR

Browser RDBMS

LL: Building and Scaling Monoliths
• Monolithic application – everything is

package into a single .ear
• Reuse primarily by sharing .jars
• A “big” push to production once or twice a

year
• Single database schema for the entire

application
• >= 500k loc
• >= Heavyweight Infrastructure
• Thousands of Testcases
• Barely New Testcases

• >= 20 Team Member
• The single .ear requiring a multi-month

test cycle /
• Huge bug and feature databases
• User Acceptance Undefined
• Technical Design Approach
• Barely Business Components or Domains
• Requiring multiple team involvement &

significant oversight
• Technical Dept
• Outdated Runtimes (Licenses, Complex

updates)
• Grown applications

More users

ht
tp

://
w

w
w

.in
te

rn
et

liv
es

ta
ts

.c
om

/in
te

rn
et

-u
se

rs
/

J2EE

Spring

RoR

Akka

Reactive Manifesto

Microservices

New requirements
• Rather than acting on data at rest, modern

software increasingly operates on data
in near real-time.

• Shortened time-frames for putting
changes into production

• New business models evolve from
existing ones

• New questions need to be answered by
existing applications

• Datacenter costs need to go down
constantly

> Traditional application architectures
and platforms are obsolete.

-- Gartner

Modernization!

Module

Module

Module

WebUI

.JAR.JAR
.JAR

.JAR.JAR
.JAR
.JAR

.JAR
.JAR
.JARBrowser RDBMS

RDBMS

RDBMS

Routing	Module

Tracking	Module

Order	Module

Tracker	UIBrowser HistoryDB

Order	DB

RoutesDB

Tracker	UI

Tracker	UI

Browser

Browser

REQ: Building and Scaling Microservices

• Lightweight runtime
• Cross – Service Security
• Transaction Management
• Service Scaling
• Load Balancing
• SLA’s
• Flexible Deployment
• Configuration
• Service Discovery
• Service Versions

• Monitoring
• Governance
• Asynchronous communication
• Non-blocking I/O
• Streaming Data
• Polyglot Services
• Modularity (Service definition)
• High performance persistence (CQRS)
• Event handling / messaging (ES)
• Eventual consistency
• API Management
• Health check and recovery

“Microservices” is a lousy term
• Size is irrelevant

We want flexible systems and organizations that can
adapt to their complex environments, make changes
without rigid dependencies and coordination, can
learn, experiment, and exhibit emergent behavior.

We need to build systems for flexibility
and resiliency, not just efficiency and

robustness.

Software Design
Outer Architecture

Methodology and
Organization

Distributed Systems

Datacenter Operating System

Software Design

Architecture Principles

• Single Responsible Principle
• Service Oriented Architecture

– Encapsulation
– Separation of Concern
– Loose Coupling

• Hexagonal Architecture

Design Patterns

• Domain-driven Design
• Bounded Contexts
• Event Sourcing
• CQRS
• Eventual Consistency
• Context Maps

Design Best Practices

• Design for Automation
• Designed for failure
• Service load balancing and automatic scaling
• Design for Data Separation
• Design for Integrity
• Design for Performance

Strategies For Decomposing

Verb or Use Case
e.g. Checkout UI

Noun
e.g. Catalog product service

Single Responsible Principle
e.g. Unix utilities

• Reactive Microservices Framework for the JVM
• Focused on right sized services
• Asynchronous I/O and communication as first class

priorities
• Highly productive development environment
• Takes you all the way to production

What is Lagom?

• Use bounded contexts as boundaries for services!
(Domain Driven Design)

• The event log is the book of record! (Event Sourcing)
• Separate the read and write sides! (CQRS)
• Microservices, too, need to be elastic and resilient! (Reactive)
• Developer experience matters! (The Lagom development

setup)

Highly opinionated!

• Service API
• Persistence API
• Development environment
• Production environment

The parts

• Event sourced (deltas) with Cassandra backend by
default

• No object/relational impedance mismatch
• Can always replay to determine current state
• Allows you to learn more from your data later
• Persistent entity is an Aggregate Root in DDD
• Can be overridden for CRUD if you want

Lagom Persistence API

Getting started.

mvn archetype:generate
-DarchetypeGroupId=com.lightbend.lagom
-DarchetypeArtifactId=maven-archetype-lagom-java
-DarchetypeVersion=1.2.2

Creating a new Lagom project

$ cd my-first-system
$ mvn lagom:runAll ...
[info] Starting embedded Cassandra server
..........
[info] Cassandra server running at 127.0.0.1:4000
[info] Service locator is running at
http://localhost:8000
[info] Service gateway is running at
http://localhost:9000
..........
[info] Service helloworld-impl listening for HTTP on
0:0:0:0:0:0:0:0:24266
[info] Service hellostream-impl listening for HTTP on
0:0:0:0:0:0:0:0:26230 (Services started, press enter
to stop and go back to the console...)

The somewhat bigger example!

Cargo	Tracker
https://github.com/lagom/activator-lagom-cargotracker

Registration

Shipping

Frontend Cassandra

Now that we have our
bundles, how do we get

into production?

• Lagom doesn’t prescribe any particular production
environment, however out of the box support is
provided for Lightbend ConductR.

• Zookeper based version:
https://github.com/jboner/lagom-service-locator-
zookeeper

• Consul based version:
https://github.com/jboner/lagom-service-locator-consul

Out of the box support for ConductR but..

>sbt bundle:dist
...
[info] Your package is ready in
/Users/myfear/lagom-cargotracker/front-
end/target/universal/front-end-1.0-
SNAPSHOT.zip

Create Service bundles via sbt

• Creating a bundle configuration file, bundle.conf
• Creating a start script
• Creating a Maven assembly plugin descriptor to create

the bundle zip
• Binding the Maven assembly plugin and

Lagom renameConductRBundle goals to your projects
lifecycle

Create Service Bundles with Maven

http://www.lagomframework.com/documentation/1.3.x/java/ConductR.html

Next Steps! Download and try Lagom!
Project Site:
http://www.lightbend.com/lagom

GitHub Repo:
https://github.com/lagom

Documentation:
http://www.lagomframework.com/documentation/1.3.x/java/Home.html

Example:
https://github.com/typesafehub/activator-lagom-java

Written for architects and developers that must
quickly gain a fundamental understanding of
microservice-based architectures, this free O’Reilly
report explores the journey from SOA to
microservices, discusses approaches to dismantling
your monolith, and reviews the key tenets of a
Reactive microservice:

• Isolate all the Things
• Act Autonomously
• Do One Thing, and Do It Well
• Own Your State, Exclusively
• Embrace Asynchronous Message-Passing
• Stay Mobile, but Addressable
• Collaborate as Systems to Solve Problems

http://bit.ly/ReactiveMicroservice

The detailed example in this report is based on
Lagom, a new framework that helps you follow the
requirements for building distributed, reactive
systems.

• Get an overview of the Reactive Programming
model and basic requirements for developing
reactive microservices

• Learn how to create base services, expose
endpoints, and then connect them with a
simple, web-based user interface

• Understand how to deal with persistence, state,
and clients

• Use integration technologies to start a
successful migration away from legacy systems

http://bit.ly/DevelopReactiveMicroservice

