
Real World Java Web Security

Dominik Schadow | bridgingIT

Java User
Group Ostfalen

… architecture while coding?

… architecture before coding?

Who thinks about …

… security while coding?

… security before coding?

Who thinks about …

… develop secure applications?

Who wants to …

OWASP TOP 10 2013
A01 Injection
A02 Broken Authentication and Session Management
A03 Cross-Site Scripting (XSS)

A04 Insecure Direct Object References
A05 Security Misconfiguration

A06 Sensitive Data Exposure
A07 Missing Function Level Access Control

A08 Cross-Site Request Forgery (CSRF)
A09 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

OWASP Proactive Controls 2016
C01 Verify for Security Early and Often
C02 Parameterize Queries
C03 Encode Data

C04 Validate All Inputs
C05 Implement Identity and Authentication Controls

C06 Implement Appropriate Access Controls
C07 Protect Data

C08 Implement Logging and Intrusion Detection
C09 Leverage Security Frameworks and Libraries

C10 Error and Exception Handling

Verify for Security Early and Often

Know the web application
Know all external entities

Identify all data flows
Identify all risks

C01

Threat

Anything that threatens the application, its data
or any other asset

Common security flaws

Forget to authenticate a user
Broken authorization

No auditing functionality
Using components with known vulns

Data Flow Diagrams
BrowserExternal

Entity
People or code outside your control

Process Any running code Web
Server

Data
Flow

Communication between processes
or processes and data stores

Data
Store

Things that store data Database

http

https

Browser Web
Server DatabaseApp

Server

Trust Boundaries
Generic

Trust
Boundary

Trust
Boundary

Where entities with different
privileges interact

Generic Trust Boundary

Web
Server

httpshttps
Web

Server
httpshttps

Generic Trust Boundary

Data Center Cloud

Browser Web
Server DatabaseApp

Server

Where are the threats?

Follow the data flow
Start with data crossing boundaries

STRIDE
Spoofing Pretending to be something or somebody else

Violated property: Authentication

Tampering

Repudiation

Modifying something on disk, network or memory
Violated property: Integrity

Claiming that someone didn’t do something
Violated property: Non-Repudiation

STRIDE
Information
Disclosure

Denial of
Service

Elevation
of Privilege

Providing information to someone not authorized
Violated property: Confidentiality

Absorbing resources needed to provide service
Violated property: Availability

Doing something someone is not authorized to do
Violated property: Authorization

Spoofing
(CSRF)

Denial of
Service Repudiation

(log file tampering)

Elevation of Privilege
(access backend

logic directly)

Tampering
(data manipulation)

Information
Disclosure

(dump database)

Data Center Cloud

Browser Web
Server DatabaseApp

Server

Demo
Threat Modeling

Threat
Target

Mitigation
Strategy Mitigation Technique Priority Issue

ID

Repudiating
actions Log Logging all security relevant

actions in an audit log 2 1001

Spoofing a
user

Identification
and

authentication
Password policy, token, password

reset process 1 1002

Network
flooding Elastic cloud Dynamic cloud resources (servers

and databases) to provide service 3 1006

Tampering
network
packets

Cryptography HTTPS/TLS 1 1007

Fight the
identified

threats by
priority

Maintain your threat models

Leverage Security
Frameworks and

Libraries

C09

Frameworks and
libraries decline

C01

The unfortunate reality of insecure libraries

Up to 80% of code in today’s applications comes from libraries
and frameworks

113 million downloads analyzed for the 31 most popular Java
libraries and frameworks

26% had known vulnerabilities (29 million)

Most vulnerabilities are undiscovered
Jeff Williams & Arshan Dabirsiaghi

The Unfortunate Reality of Insecure Libraries
Aspect Security (March 2012)

http://cdn2.hubspot.net/hub/315719/file-1988689661-pdf/download-files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf

preparation
mvn dependency:copy-dependencies

single project
dependency-check --project SampleProject
--scan target/dependency

multiple projects
dependency-check --project MultipleProjects
--scan ./**/*.jar

preparation
mvn dependency:copy-dependencies

single project
dependency-check --project SampleProject
--scan target/dependency

multiple projects
dependency-check --project MultipleProjects
--scan ./**/*.jar

preparation
mvn dependency:copy-dependencies

single project
dependency-check --project SampleProject
--scan target/dependency

multiple projects
dependency-check --project MultipleProjects
--scan ./**/*.jar

preparation
mvn dependency:copy-dependencies

single project
dependency-check --project SampleProject
--scan target/dependency

multiple projects
dependency-check --project MultipleProjects
--scan ./**/*.jar

<reporting>
 <plugins><plugin>
 <groupId>org.owasp</groupId>
 <artifactId>dependency-check-maven</artifactId>
 <version>1.3.6</version>
 <reportSets>
 <reportSet>
 <reports>
 <report>aggregate</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin></plugins>
</reporting>

Dependency Check might take too long for an automatic
build after every push

Extend only the nightly build job with Dependency
Check

Don’t set up an individual NVD per job, use a
centralized one and update it separately

Jenkins integration

Create a NVD update only job

Reference the database in every build

Analyze your code

Demo
FindSecurityBugs

Beyond the top 10

Server Transport Browser

Defense in depth

X-Frame-Options

Content Security Policy (CSP)

HTTP Strict Transport Security (HSTS)

HTTP Public Key Pinning (HPKP)

Security response headers

Individual Servlet filter for every header
Intercepts all responses

Always identical configuration

Easier to test

A single place to configure each policy

Easier to integrate in other web applications (ok: copy)

@WebFilter(filterName = "CacheControlFilter", urlPatterns = {"/*"})
public class CacheControlFilter implements Filter {
 public void doFilter(ServletRequest sReq, ServletResponse sRes,
 FilterChain fc) {
 HttpServletResponse response = (HttpServletResponse) sRes;
 response.addHeader("Cache-Control",
 "no-cache, must-revalidate, max-age=0, no-store");
 fc.doFilter(servletRequest, response);
 }

 public void init(FilterConfig filterConfig){}

 public void destroy() {}
}

@WebFilter(filterName = "CacheControlFilter", urlPatterns = {"/*"})
public class CacheControlFilter implements Filter {
 public void doFilter(ServletRequest sReq, ServletResponse sRes,
 FilterChain fc) {
 HttpServletResponse response = (HttpServletResponse) sRes;
 response.addHeader("Cache-Control",
 "no-cache, must-revalidate, max-age=0, no-store");
 fc.doFilter(servletRequest, response);
 }

 public void init(FilterConfig filterConfig){}

 public void destroy() {}
}

@WebFilter(filterName = "CacheControlFilter", urlPatterns = {"/*"})
public class CacheControlFilter implements Filter {
 public void doFilter(ServletRequest sReq, ServletResponse sRes,
 FilterChain fc) {
 HttpServletResponse response = (HttpServletResponse) sRes;
 response.addHeader("Cache-Control",
 "no-cache, must-revalidate, max-age=0, no-store");
 fc.doFilter(servletRequest, response);
 }

 public void init(FilterConfig filterConfig){}

 public void destroy() {}
}

response.addHeader(
 "Policy name",
 "Policy value"
);

Browser must
understand

header

Additional
security

layer

X-Frame-Options

Prevents UI redressing attacks

div

iframe

UI redressing attacks in a nutshell

response.addHeader(
 "X-Frame-Options",
 "DENY"
);

"SAME-ORIGIN"
"ALLOW-FROM [uri]“

ALLOW-FROM only supported
in Firefox and Internet Explorer

X-Frame-Options browser compatibility

Content Security Policy (CSP)

Whitelist all content
Prevents content injection

(Cross-Site Scripting)

response.addHeader(
 "Content-Security-Policy",
 "default-src 'self'"
);

Content Security Policy Directives
default-src
object-src
script-src

default if specific directive is not set
Sources in object, embed or applet tags
Script sources (includes XSLT)

connect-src
font-src
child-src
img-src
media-src
style-src

XMLHttpRequest, WebSocket, …
Font sources
Sources embeddable as frames/ iframes
Image sources
Video and audio sources
CSS sources (does not include XSLT)

www.w3.org/TR/CSP2

http://www.w3.org/TR/CSP2

response.addHeader(
 "Content-Security-Policy",
 "default-src 'none';
 script-src 'self';
 image-src 'self';
 font-src 'self' https://fonts.googleapis.com;
 style-src 'self' https://fonts.googleapis.com"
);

Violation Report
{
 "document-uri":"http://.../reporting.jsp?
 name=%3Cscript%3Ealert(%27XSS%27)%3C/script%3E",
 "referrer":"http://www.sample.com/security-header/
 index.jsp",
 "blocked-uri":"self",
 "violated-directive":"default-src http://www.sample.com",
 "source-file":"http://.../reporting.jsp?  
 name=%3Cscript%3Ealert(%27XSS%27)%3C/script%3E",
 "script-sample":"alert('XSS')",
 "line-number":10
}

CSP Level 1 browser compatibility

http://caniuse.com/#feat=contentsecuritypolicy

Don’t use inline styles or scripts

Start with default-src: 'none'  
(or default-src: 'self')

Configure other directives to make your application work

Specify a report URI and improve the CSP header

Use a generator, browser developer tools and an analyzer

Adding CSP to your application

CSP Level 2 will replace other headers in the future

Be aware that older browsers understand the current
(old) headers but will never understand CSP Level 2

One header to rule them all

Content Security Policy 2 extensions
frame-ancestors
Allow resource frame embedding (obsoletes X-Frame-Options
header)
reflected-xss
(De-)activate user agent XSS heuristics (obsoletes X-XSS-
Protection header)
upgrade-insecure-request
Load everything over HTTPS, even if URL specifies HTTP (page is
loaded via HTTPS)
block-all-mixed-content
Prevent browser from loading any assets using HTTP when using
HTTPS

response.addHeader(
 "Content-Security-Policy",
 "default-src 'self';
 frame-ancestors 'none'"
);

Forces browsers to upgrade any link automatically to
HTTPS

Does not block the request, but upgrades it

Implemented as CSP directive or meta tag

Upgrade requests to HTTPS

<meta http-equiv="Content-
Security-Policy" content="upgrade-
insecure-requests">

CSP Level 2 browser compatibility

http://caniuse.com/#feat=contentsecuritypolicy2

HTTP Strict Transport Security (HSTS)

Force HTTPS
Prevent TLS stripping

HTTP
301 HTTPS

HTTPS

Server is issuing a 301 redirect

Without HSTS, first call

HTTP
301 HTTPS

HTTPS

Server is issuing a 301 redirect

Without HSTS, second call

response.addHeader(
 "Strict-Transport-Security",
 "max-age=31556926"
);

"max-age=31556926; includeSubDomains"

"max-age=31556926; includeSubDomains; preload"

HTTP
301 HTTPS (+ HSTS)

HTTPS

Server is issuing a 301 redirect

With HSTS, first call

307 HTTPS

Browser is issuing a 307 internal redirect

With HSTS, second call

The configured duration should not expire, there will be an
initial unprotected request otherwise

All resources must be available via HTTPS, includes any
(external) scripts, images, …

Valid certificate required, no self-signed certificates any
more

Requires a HTTPS connection, not active on HTTP
connections

HSTS requirements

Preload list for HSTS hosts hard coded into Chrome

Included in Firefox, Internet Explorer and Safari

Requires the complete HSTS header 
Strict-Transport-Security "max-age=31556926;
includeSubDomains; preload"

Submit your page at https://hstspreload.appspot.com

HSTS preload list

https://hstspreload.appspot.com

HSTS browser compatibility

http://caniuse.com/#feat=stricttransportsecurity

HTTP Public Key Pinning (HPKP)

Fixes the broken CA system
Be careful, invalid hash
prevents page access

response.addHeader(
 "Public-Key-Pins",
 "pin-sha256='eSC+HM0…wuKgUzr4=';
 pin-sha256='7HIpact…oQYcRhJ3Y=';
 max-age=5184000;
 includeSubdomains;
 report-uri='https://...'");
);

HPKP browser compatibility

http://caniuse.com/#feat=publickeypinning

HSTS + HPKP
Most headers are only active
in the current response

Recx is a HTTP header and
cookie security analyzer
plugin for Google Chrome

Alternatives are the Security
Headers extensions for
Chrome and Firefox

Demo
security-header

Summary

Use the OWASP Proactive Controls
as a real world guide

Start small and secure your
development part first

Spread the word

dominik.schadow@bridging-it.de  
www.bridging-it.de

Demo Projects  
github.com/dschadow/JavaSecurity

Microsoft Threat Modeling Tool  
www.microsoft.com/en-us/sdl/adopt/
threatmodeling.aspx

OWASP Dependency Check 
www.owasp.org/index.php/
OWASP_Dependency_Check

OWASP TOP 10  
www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project

OWASP TOP 10 Proactive Controls  
www.owasp.org/index.php/
OWASP_Proactive_Controls

Recx Security Analyser 
www.recx.co.uk/products/chromeplugin.php

Spring Security  
projects.spring.io/spring-security

Pictures  
www.dreamstime.com

Marienstraße 17  
70178 Stuttgart

Blog blog.dominikschadow.de  
Twitter @dschadow

mailto:dominik.schadow@bridging-it.de
http://www.bridging-it.de
http://blog.xml-sicherheit.de

